Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 17, 2026
- 
            Abstract This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAI), highlighting its potential to reshape the geospatial research field. GeoAI, emerging from the confluence of geospatial technologies and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolution is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze complex geospatial phenomena. Our findings highlight the synergy between human intelligence and AI. Particularly, the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric AI, while the evolving GeoAI landscape underscores the significance of human–robot interaction and the customization of GeoAI services to meet individual needs. The concept of mixed-experts GeoAI, integrating human expertise with AI, plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical application of GeoAI. By exploring these human-centric considerations, we discuss how the collaborations between humans and AI transform the future of work at the human-technology frontier and redefine the role of AI in geospatial contexts.more » « less
- 
            Abstract The Symposium on Human Dynamics Research, first organized at the 2015 AAG Meeting in Chicago, celebrated its 10th anniversary at the 2024 AAG Meeting in Honolulu, marking a decade of transformative advancements in the field. Over the past decade, the focus of human dynamics research has shifted from traditional spatial-temporal analyses to sophisticated modeling of human behavior in a hybrid physical-virtual world. This evolving field now examines the intricate interdependencies between physical and digital environments, addressing critical issues such as urban resilience, public health, social equity, and community sustainability. The symposium emphasized the growing importance of interdisciplinary collaboration, advanced data-driven analytical platforms, and innovative theoretical frameworks to better understand human interactions across these spaces. As human dynamics continue to shape global urban systems, these advancements are pivotal for future research and real-world problem-solving, offering novel insights into the interconnectedness of mobility, technology, and societal well-being in a rapidly changing world.more » « less
- 
            Motor vehicle accidents are one of the most prevalent causes of traumatic injury in patients needing transport to a trauma center. Arrival at a trauma center within an hour of the accident increases a patient’s chances of survival and recovery. However, not all vehicle accidents in Tennessee are accessible to a trauma center within an hour by ground transportation. This study uses the anti-covering location problem (ACLP) to assess the current placement of trauma centers and explore optimal placements based on the population distribution and spatial pattern of motor vehicle accidents in 2015 through 2019 in Tennessee. The ACLP models seek to offer a method of exploring feasible scenarios for locating trauma centers that intend to provide accessibility to patients in underserved areas who suffer trauma as a result of vehicle accidents. The proposed ACLP approach also seeks to adjust the locations of trauma centers to reduce areas with excessive service coverage while improving coverage for less accessible areas of demand. In this study, three models are prescribed for finding optimal locations for trauma centers: (a) TraCt: ACLP model with a geometric approach and weighted models of population, fatalities, and spatial fatality clusters of vehicle accidents; (b) TraCt-ESC: an extended ACLP model mitigating excessive service supply among trauma center candidates, while expanding services to less served areas for more beneficiaries using fewer facilities; and (c) TraCt-ESCr: another extended ACLP model exploring the optimal location of additional trauma centers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
